วันพุธที่ 24 สิงหาคม พ.ศ. 2554

คณะ/สาขา ที่ผมสนใจมากๆๆๆ

             ทันตแพทยศาสตร์ (อังกฤษ : dentistry) เป็นสาขาวิชาที่ประเมิน วินิจฉัย ป้องกัน และรักษาโรค ความผิดปกติ หรือภาวะในช่องปาก บริเวณใบหน้าขากรรไกร และ/หรือบริเวณใกล้เคียงและโครงสร้างอื่นๆ ที่เกี่ยวข้อง และผลกระทบต่อร่างกายมนุษย์ บุคคลที่ประกอบอาชีพที่กระทำหัตถการดังกล่าวจะเรียกว่า ทันตแพทย์ (dentist)
ทันตแพทย์เป็นวิชาชีพทางสาธารณสุขที่ผ่านการศึกษาและฝึกฝนจนสำเร็จการศึกษา ซึ่งในประเทศไทยจะได้รับปริญญาบัตรทันตแพทยศาสตร์บัณฑิต (ท.บ.) หรือเทียบเท่ากับ Doctor of Dental Surgery (DDS) สำหรับในต่างประเทศยังมีวุฒิการศึกษาอื่นๆ ที่เทียบเท่า เช่น Doctor of Dental Medicine (DMD) , Bachelor of Dentistry (BDent) , Bachelor of Dental Science (BDSc) , หรือ Bachelor of Dental Surgery/Chirurgiae (BDS หรือ BChD) ในประเทศไทยนอกจากจะต้องผ่านการศึกษาในคณะทันตแพทยศาสตร์เป็นเวลา 6 ปีแล้วจะต้องได้รับอนุมัติใบอนุญาตประกอบวิชาชีพทันตกรรม ซึ่งออกโดยทันตแพทยสภา

ถ่านหิน

ถ่านหิน คือ หินตะกอนชนิดหนึ่งที่เกิดจากการตกตะกอนสะสมของซากพืชในยุคดึกดำบรรพ์เป็นเวลายาวนานหลายล้านปี จนตะกอนนั้นได้เปลี่ยนสภาพไปและมีองค์ประกอบส่วนใหญ่เป็นธาตุคาร์บอน โดยมีธาตุอื่นๆทั้งที่เป็นก๊าซและของเหลวปนอยู่ด้วยในสัดส่วนที่น้อยกว่าและเป็นแร่เชื้อเพลิงสามารถติดไฟได้ มีสีน้ำตาลอ่อนจนถึงสีดำ มีทั้งชนิดผิวมันและผิวด้าน น้ำหนักเบา ถ่านหินประกอบด้วยธาตุที่สำคัญ 4 อย่างได้แก่ คาร์บอน ไฮโดรเจน ไนโตรเจน และออกซิเจน นอกจากนั้น มีธาตุหรือสารอื่น เช่น กำมะถัน เจือปนเล็กน้อย ถ่านหินที่มีจำนวนคาร์บอนสูงและมีธาตุอื่น ๆ ต่ำ เมื่อนำมาเผาจะให้ความร้อนมาก ถือว่าเป็นถ่านหินคุณภาพดี

ประเภทของถ่านหิน

การเกิดถ่านหินมีความหลากหลายทั้งจากปัจจัยของแหล่งกำเนิด ระยะเวลาและสภาวะต่างๆ ทำให้ถ่านหินจากแหล่งต่างกันมีองค์ประกอบและคุณสมบัติต่างกันและถูกแบ่งประเภทไว้เป็นศักดิ์ (RANK) ตามความสมบูรณ์ทางธรณีวิทยาที่กลายเป็นถ่านหิน (Coalification Process) สามารถแยกประเภทตามลำดับชั้นได้เป็น 5 ประเภท คือ[1]
  1. พีต (Peat) เป็นขั้นแรกในกระบวนการเกิดถ่านหิน ประกอบด้วยซากพืชซึ่งบางส่วนได้สลายตัวไปแล้ว แต่ซากพืชบางส่วนยังสลายตัวไม่หมด ยังมองเห็นเป็นลำต้น กิ่ง หรือใบ มีสีน้ำตาลถึงสีดำ มีปริมาณคาร์บอนต่ำ ประมาณร้อยละ 50-60 โดยมวล มีปริมาณออกซิเจนและความชื้นสูงแต่สามารถใช้เป็นเชื้อเพลิงได้
  2. ลิกไนต์ (Lignite) เป็นถ่านหินที่มีสีน้ำตาลผิวด้าน มีซากพืชหลงเหลืออยู่เล็กน้อย มีคาร์บอนร้อยละ 60-75 มีออกซิเจนค่อนข้างสูง มีความชื้นสูงถึงร้อยละ 30-70 เมื่อติดไฟมีควันและเถ้าถ่านมาก มีความชื้นมาก เป็นถ่านหินที่ใช้เป็นเชื้อเพลิงสำหรับผลิตกระแสไฟฟ้า บ่มใบยาสูบ
  3. ซับบิทูมินัส (Subbituminous) เป็นถ่านหินที่ใช้เวลาในการเกิดนานกว่าลิกไนต์ มีสีน้ำตาลถึงสีดำ ผิวมีทั้งด้านและเป็นมัน มีทั้งเนื้ออ่อนและเนื้อแข็ง มีความชื้นประมาณร้อยละ 25-30 มีคาร์บอนสูงกว่าลิกไนต์ เป็นเชื้อเพลิงที่มีคุณภาพเหมาะสมในการผลิตกระแสไฟฟ้าและงานอุตสาหกรรม
  4. บิทูมินัส (Bituminous) เป็นถ่านหินที่ใช้เวลาในการเกิดนานกว่าซับบิทูมินัส เนื้อแน่น แข็ง มีสีน้ำตาลถึงสีดำสนิท ประกอบด้วยชั้นถ่านหินสีดำมันวาว ใช้เป็นเชื้อเพลิงเพื่อการถลุงโลหะ และเป็นวัตถุดิบเพื่อเปลี่ยนเป็นเชื้อเพลิงอื่นๆ
  5. แอนทราไซต์ (Anthracite) เป็นถ่านหินที่ใช้เวลาในการเกิดนานกว่าบิทูมินัส มีลักษณะดำเป็นเงา มันวาวมาก มีรอยแตกเว้าแบบก้นหอย มีปริมาณคาร์บอนประมาณร้อยละ 90-98 ความชื้นต่ำประมาณร้อยละ 2-5 มีค่าความร้อนสูงแต่ติดไฟยาก เมื่อติดไฟให้เปลวไฟสีน้ำเงิน ไม่มีควัน ใช้เป็นเชื้อเพลิงในอุตสาหกรรมต่างๆ

 การใช้ประโยชน์ถ่านหิน

ถ่านหินถูกนำมาใช้ประโยชน์อย่างแพร่หลาย เนื่องจากมีแหล่งสำรองกระจายอยู่ทั่วโลกและปริมาณค่อนข้างมาก การขุดถ่านหินขึ้นมาใช้ประโยชน์ไม่ยุ่งยากซับซ้อน ถ่านหินราคาถูกกว่าน้ำมัน ถ่านหินส่วนใหญ่จึงถูกนำมาเป็นเชื้อเพลิงในอุตสาหกรรมต่าง ๆ ที่ใช้หม้อน้ำร้อนในกระบวนการผลิต เช่น การผลิตไฟฟ้า การถลุงโลหะ การผลิตปูนซีเมนต์ การบ่มใบยาสูบ และการผลิตอาหาร เป็นต้น นอกจากนั้นยังมีการใช้ประโยชน์ในด้านอื่น เช่น การทำถ่านสังเคราะห์ (Activated Carbon) เพื่อดูดซับกลิ่น การทำคาร์บอนด์ไฟเบอร์ (Carbon Fiber) ซึ่งเป็นวัสดุที่มีความแข็งแกร่งแต่มีน้ำหนักเบา และการแปรสภาพถ่านหินเป็นเชื้อเพลิงเหลว (Coal liquefaction) หรือ เป็นแปรสภาพก๊าซ (Coal Gasification) ซึ่งเป็นการใช้ถ่านหินแบบเชื้อเพลิงสะอาดเพื่อช่วยลดมลภาวะจากการใช้ถ่านหินเป็นเชื้อเพลิงได้อีกทางหนึ่ง ภายใต้กระบวนการแปรสภาพถ่านหิน จะสามารถแยกเอาก๊าซที่มีฤทธิ์เป็นกรดหรือเป็นพิษ และสารพลอยได้ต่าง ๆ ที่มีอยู่ในถ่านหินนำไปใช้ประโยชน์อื่นได้อีก เช่น กำมะถันใช้ทำกรดกำมะถันและแร่ยิปซัม แอมโมเนียใช้ทำปุ๋ยเพื่อเกษตรกรรม เถ้าถ่านหินใช้ทำวัสดุก่อสร้าง เป็นต้น

 แหล่งถ่านหินในประเทศไทย

ประเทศไทยมีแหล่งถ่านหินกระจายอยู่ทั่วทุกภาค มีปริมาณสำรองทั้งสิ้น ประมาณ 2,197 ล้านตัน แหล่งสำคัญอยู่ในภาคเหนือประมาณ 1,803 ล้านตัน หรือร้อยละ 82 ของปริมาณสำรองทั่วประเทศ ส่วนอีก 394 ล้านตัน หรือ ร้อยละ 18 อยู่ภาคใต้ ถ่านหินส่วนใหญ่มีคุณภาพต่ำอยู่ในขั้นลิกไนต์และซับบิทูมินัส มีค่าความร้อนระหว่าง 2,800 - 5,200 กิโลแคลอรี่ต่อกิโลกรัม หรือ ถ่านลิกไนต์ 2 - 3.7 ตัน ให้ค่าความร้อนเท่ากับน้ำมันเตา 1 ตัน ลิกไนต์เป็นถ่านหินที่พบมากที่สุดในประเทศไทย ที่แม่เมาะ จ.ลำปาง และ จ.กระบี่ จัดว่าเป็นลิกไนต์ที่คุณภาพแย่ที่สุด พบว่าส่วนใหญ่ มีเถ้าปนอยู่มากแต่มีกำมะถันเพียงเล็กน้อย คาร์บอนคงที่อยู่ระหว่างร้อยละ 41 - 74 ปริมาณความชื้นอยู่ระหว่างร้อยละ 7 - 30 และเถ้าอยู่ระหว่างร้อยละ 2 - 45 โดยน้ำหนัก ในช่วงที่ราคาน้ำมันยังไม่แพงประเทศไทยไม่นิยมใช้ลิกไนต์มากนักแต่ภายหลังที่เกิดวิกฤติน้ำมัน จึงได้มีการนำลิกไนต์มาใช้แทนน้ำมันเชื้อเพลิงมากขึ้นทั้งในด้านการผลิตกระแสไฟฟ้าและอุตสาหกรรม แหล่งถ่านหินที่มีการสำรวจพบบางแหล่งได้ทำเหมืองผลิตถ่านหินขึ้นมาใช้ประโยชน์แล้ว แต่บางแหล่งยังรอการพัฒนาขึ้นมาใช้ประโยชน์ต่อไป
ในฐานะเป็นเชื้อเพลิงตัวหนึ่งถ่านหินก้อมีข้อดีข้อด้อยในตัวเองเช่นเดียวกับเชื้อเพลิงน้ำมัน ก๊าซ และเชื้อเพลิงหมุนเวียน การพิจารณานำมาใช้ก็ขึ้นอยู่กับความเหมาะสมต่อสถานการณ์แตกต่างกันไป โดยข้อดีและข้อด้อยของเชื้อเพลิงชนิดต่างๆสามารถสรุปเปรียบเทียบได้ดังนี้
เชื้อเพลิงข้อดีข้อเสีย
ถ่านหินมีอยู่มาก ไม่ขาดแคลน ขนส่ง และเก็บง่าย ราคาถูก ปลอดภัย ไม่เสี่ยงมีองค์ประกอบเป็นคาร์บอนมากที่สุด ปัญหาการยอมรับของสังคมทำให้ต้องมีการจัดการลดก๊าซ CO₂ มาก
น้ำมันเหมาะสมกับภาคขนส่ง ใช้สะดวก ขนส่งและเก็บง่ายแหล่งเชื้อเพลิงกระจุกตัวมีองค์ประกอบเป็นคาร์บอนมาก ปริมาณสำรองเหลือน้อย
ก๊าซมีประสิทธิภาพสูง ไม่เหลือกากหรือเศษที่ต้องกำจัด เหมาะสมกับภาคครัวเรือนมีองค์ประกอบเป็นคาร์บอนมาก แปลงเป็นเชื้อเพลิงอื่น หรือผลิตภัณฑ์ได้สะดวก ราคาผันผวนมาก ไม่มั่นคง มีแหล่งเชื้อเพลิงกระจุกตัว มีความเสี่ยงขณะขนส่ง และเก็บ
นิวเคลียร์เชื้อเพลิงราคาถูก ให้พลังงานมาก ปราศจากคาร์บอนการจัดการกับกากนิวเคลียร์ยังเป็นประเด็นปัญหา ปัญหาการยอมรับ ความเสี่ยงเรื่องความคุ้มค่าของสังคม เงินลงทุนสูงมาก
เชื้อเพลิงหมุนเวียนเกิดมลภาวะน้อย ใช้ได้ยั่งยืนความเสี่ยงสูงจากภัยธรรมชาติ หรือการก่อการร้าย ปริมาณจำกัด ขึ้นอยู่กับพื้นที่และฤดูกาล มีไม่พอกับความต้องการ แต่พลังงานน้อย ใช้พื้นที่กองเก็บมาก ราคาผันผวน พลังงานแสงอาทิตย์ใช้พื้นที่มาก ให้พลังงานต่อน้ำหนักน้อย

 การใช้ถ่านหินในโลก

ถ่านหินเป็นเชื้อเพลิงหลักในการผลิตไฟฟ้าของโลก โดยมีสัดส่วนประมาณร้อยละ 41 มากกว่าเชื้อเพลิงชนิดอื่น เนื่องจากมีราคาถูก และสามารถจัดหาได้ง่าย การใช้ถ่าน การใช้ถ่านหินเพื่อผลิตไฟฟ้าในโรงไฟฟ้าทั่วไปจะใช้ความร้อนจากการเผาไหม้ถ่านหินมาต้มน้ำให้เกิดไอน้ำโดยใช้หม้อไอน้ำ (Steam Boiler) หรือเครื่องกำเนิดไอน้ำ (Steam Generator)และส่งไอน้ำไปขับเคลื่อนกังหันไอน้ำ (Steam Turbine)และเครื่องกำเนิดไฟฟ้า (Generator)เพื่อผลิตไฟฟ้า
นอกจากใช้ถ่านหินเพื่อผลิตไฟฟ้าแล้ว ถ่านหินยังเป็นแหล่งพลังงานความร้อนที่สำคัญในภาคอุตสาหกรรม เช่น อุตสาหกรรมถลุงเหล็ก ปูนซีเมนต์ กระดาษ อาหาร เป็นต้น สารเคมีต่างๆ ในถ่านหินยังสามารถแยกออกมาเพื่อผลิตพลาสติก น้ำมันทาร์ ไฟเบอร์สังเคราะห์ ปุ๋ย และยาได้
แหล่งถ่านหินนั้นมีกระจายอยู่เกือบทุกประเทศทั่วโลก ซึ่งแหล่งที่สามารถขุดขึ้นมาใช้ประโยชน์ได้ (Recoverable Reserves) มีประมาณ 70 ประเทศ ซึ่งจากการประมาณปริมาณสำรองถ่านหินของโลก โดย Energy Information Administration ประเทศสหรัฐอเมริกา พบว่าในปี พ.ศ. 2546 ทั่วโลกมีปริมาณสำรองถ่านหิน 1,000,912 ล้านตัน โดยพื้นที่ที่มีปริมาณสำรองถ่านหินอยู่มาก ได้แก่ ในทวีปอเมริกาเหนือ โดยเฉพาะประเทศสหรัฐอเมริกา ทวีปยุโรป โดยเฉพาะประเทศโปแลนด์ เยอรมัน และทวีปเอเชีย โดยเฉพาะประเทศจีน ออสเตรเลีย อินเดีย และประเทศรัสเซีย
เนื่องจากถ่านหินมีราคาถูก สามารถจัดหาได้ง่ายและกองเก็บไว้ในโรงไฟฟ้าได้ทำให้การผลิตไฟฟ้าเพื่อรองรับไฟฟ้าขั้นต่ำ (Base Load Demand)ส่วนความผันผวนของราคาถ่านหิน เนื่องจากถ่านหินเป็นสินค้า (Commodity)ชนิดหนึ่งซึ่งมีการซื้อขายกันในตลาดโลกเช่นเดียวกับน้ำมัน ราคาถ่านหินจึงอาจมีแนวโน้มสูงขึ้นหรือต่ำลงในลักษณะเดียวกับน้ำมันได้ ซึ่งเป็นไปตามสภาวะเศรษฐกิจ ความต้องการใช้ และการเก็งกำไรในตลาด อย่างไรก็ตามถ่านหินยังคงมีราคาถูกเมื่อเปรียบเทียบกับเชื้อเพลิงชนิดอื่น

 การใช้ถ่านหินในประเทศไทย

ถ่านหินส่วนใหญ่ที่พบในประเทศไทยเป็นลิกไนต์ (Lignite) ที่มีคุณภาพค่อนข้างต่ำ คือมีค่าความร้อนต่ำ ความชื้นสูง เถ้าสูง และบางแหล่งมีปริมาณซัลเฟอร์สูง ดดยมีแหล่งใหญ่ที่สุดอยู่ที่ อ.แม่เมาะ จ.ลำปาง
นอกจากนั้นแล้ว ยังมีถ่านหินที่มีคุณภาพสูงขึ้นคือ ซับบิทูมินัส (Sub bituminous) และแอนทราไซต์ (Anthracite)อยู่เพียงเล็กน้อย ที่จังหวัดเลย สำหรับปริมาณปริมาณถ่านหินสำรองของประเทศไทย แบ่งเป็นลิกไนต์สำหรับผลิตไฟฟ้า มีปริมาณ 1,140 ล้านตัน และซับบิทูมินัส ที่ใช้สำหรับอุตสาหกรรม ประมาณ 200 ล้านตัน
ปัจจุบันประชาชนชาวไทยยังไม่ยอมรับเชื้อเพลิงถ่านหินเนื่องจากประสบการณ์ในอดีตของโรงไฟฟ้าแม่เมาะ ซึ่งเทคโนโยยีในสมัยนั้นยังไม่ทันสมัยและการลงทุนติดตั้งเครื่องมืออุปกรณ์ควบคุมมลภาวะอาจยังไม่คุ้มค่าทางเศรษฐศาสตร์ ประกอบกับแหล่งถ่านหินในประเทศเป็นถ่ายหินที่คุณภาพไม่ดีนัก ถึงแม้ภายหลังจะได้รับการบริหารจัดการเป็นอย่างดี ทั้งด้านเทคโนโลยีที่สะอาดและการได้รับความยอมรับในพื้นที่ แต่ก็ยังเป็นที่กังวลของหลายฝ่าย จึงทำให้ความรู้เกี่ยวกับเทคโนโลยีถ่านหินยังไม่แพร่หลายมากนักในประเทศไทย

 อ้างอิง

  1. ^ สำราญ พฤกษ์สุนทร, คัมภีร์เคมี ฉบับสมบูรณ์ ม.4-5-6, สำนักพิมพ์ พ.ศ.พัฒนา, พิมพ์ที่ โรงพิมพ์เพิ่มทรัพย์การพิมพ์, หน้า 313-314, ISBN 978-974-9719-57-2

 อ้างอิง

ทางเลือกเชื้อเพลิง ทางออกไฟฟ้าไทย กระทรวงพลังงาน

ปิโตรเลียม

ปิโตรเลียม (ละติน: petroleum มาจากภาษากรีก petra (หิน) กับภาษาละติน oleum (น้ำมัน)[1] รวมหมายถึง "น้ำมันที่ได้จากหิน") หรือเรียกว่า น้ำมันดิบ บางครั้งเรียกอย่างไม่เป็นทางการว่า "ทองคำสีดำ" หรือ "น้ำชาเท็กซัส" คือเป็นของเหลวที่ขุ่นข้นมีสีน้ำตาลเข้มหรือสีเขียวเข้ม
ปิโตรเลียมเป็นสารไฮโดรคาร์บอนที่เกิดขึ้นเองตามธรรมชาติ โดยมีธาตุองค์ประกอบหลัก 2 ชนิด คือ คาร์บอนและไฮโดรเจน ซึ่งอาจมีธาตุอโลหะชนิดอื่นปนอยู่ด้วย เช่น กำมะถัน ออกซิเจน ไนโตรเจน ทั้งนี้ปิโตรเลียมเป็นได้ทั้ง 3 สถานะ คือ ของแข็ง ของเหลว หรือแก๊ส โดยจะขึ้นอยู่กับองค์ประกอบของปิโตรเลียม รวมถึงความร้อนและความดันของสภาพแวดล้อมในการเกิดและการกักเก็บปิโตรเลียม
ปิโตรเลียม แบ่งตามสถานะได้เป็น 2 ชนิดหลักๆ คือ น้ำมันดิบ (Oil) และแก๊สธรรมชาติ (Natural Gas)
  1. น้ำมันดิบ จะประกอบด้วยสารไฮโดรคาร์บอนชนิดระเหยง่ายเป็นหลัก นอกจากนั้นจะเป็นสารจำพวกกำมะถัน ไนโตรเจน และสารประกอบออกไซด์อื่นปนอยู่
  2. แก๊สธรรมชาติ เป็นปิโตรเลียมที่อยู่ในรูปของแก๊สอุณหภูมิ และความดันที่ผิวโลก ซึ่งประกอบด้วยสารไฮโดรคาร์บอนเป็นหลัก โดยอาจมีสัดส่วนสูงถึงร้อยละ 95 ส่วนที่เหลือจะเป็นสารจำพวกไนโตรเจน และคาร์บอนไดออกไซด์ บางครั้งอาจจะพบไฮโดรเจนซัลไฟด์ปนอยู่ด้วย โดยจะหมายรวมถึง แก๊สธรรมชาติเหลว ซึ่งเมื่ออยู่ในแหล่งกักเก็บใต้ผิวโลกซึ่งมีอุณหภูมิและความดันสูงจะมีสภาพเป็นแก๊ส และจะกลายสภาพเป็นของเหลวเมื่อขึ้นมาสู่พื้นผิว เนื่องจากประกอบด้วยไฮโดรคาร์บอนในกลุ่มเดียวกันกับแก๊สธรรมชาติ แต่มีจำนวนคาร์บอนอะตอมในโครงสร้างโมเลกุลสูงกว่าแก๊สธรรมชาติ จึงเรียกว่า แก๊สธรรมชาติเหลว

 กำเนิดปิโตรเลียม

ปัจจุบันนักธรณีวิทยามีความเชื่อว่า ปิโตรเลียมมีต้นกำเนิดมาจากการตายทับถมกันของซากพืชซากสัตว์ภายใต้พื้นโลกเป็นเวลาล้านๆ ปี จนกลายเป็นชั้นหิน และด้วยอุณหภูมิ และความดันที่สูง ซึ่งเป็นผลมาจากการเคลื่อนตัวของชั้นหินและอุณหภูมิใต้พิภพ อีกทั้งยังต้องมีปริมาณของออกซิเจน (O2) ต่ำเพื่อป้องกันไม่ให้เกิดการสลายตัวของอินทรียสารจากซากสิ่งมีชีวิตเหล่านี้ จากนั้นสารอินทรีย์ซึ่งมีสารประกอบไฮโดรคาร์บอนเป็นส่วนมาก ก็จะเกิดการเปลี่ยนแปลงทางเคมีอย่างช้าๆ จนในท้ายที่สุดจะแปรสภาพเป็นแก๊สธรรมชาติและน้ำมันดิบสะสมและซึมผ่านในชั้นหินที่มีรูพรุน เช่น ชั้นหินทรายและชั้นหินปูน ซึ่งโดยปกติจะปริมาณการสะสมตัวประมาณ 5.25% ของปริมาตรหิน ทั้งนี้ไฮโดรคาร์บอนดังกล่าวสามารถเคลื่อนย้ายไปตามช่องว่างและรอยแตกในหินข้างเคียงได้
ลักษณะโครงสร้างทางธรณีวิทยาของชั้นหินที่เหมาะสมในการกักเก็บปิโตรเลียม คือ
  1. โครงสร้างรูปโค้งประทุนคว่ำ เกิดจากการคดโค้งของชั้นหิน ทำให้มีรูปร่างโค้งคล้ายกระทะคว่ำหรือหลังเต่าน้ำมันและแก๊สธรรมชาติจะเคลื่อนเข้าไปรวมตัวกันอยู่ในส่วนโค้งก้นกระทะด้านบน โดยมีชั้นหินเนื้อแน่นปิดทับอยู่
  2. โครงสร้างรูปประดับชั้น สามารถเกิดขึ้นได้หลายรูปแบบ ขึ้นอยู่กับการเปลี่ยนแปลงของชั้นหิน โดยที่ชั้นหินกักเก็บปิโตรเลียมจะถูกปิดล้อมเป็นกะเปาะอยู่ระหว่างชั้นหินเนื้อแน่น
  3. โครงสร้างรูปโดม เกิดจากการดันตัวของโดมเกลือ ผ่านชั้นหินกักเก็บน้ำมัน และจะเกิดการสะสมของปิโตรเลียมอยู่ด้านข้างของชั้นโดมเกลือนั้น
  4. โครงสร้างรูปรอยเลื่อน เกิดการเลื่อนตัวชั้นหิน ทำให้เกิดรอยแตก (Fault) ขึ้น และทำให้ชั้นหินที่มีเนื้อแน่นเลื่อนมาปิดทับชั้นหินที่มีรูพรุนที่มีปิโตรเลียมอยู่ ปิโตรเลียมจึงสามารถกักเก็บอยู่ในชั้นหินนั้นได้

 การค้นพบปิโตรเลียม

นักโบราณคดีเชื่อว่าประมาณ 2,500 ปีก่อนคริสตกาล อารยธรรมบาบิโลเนีย เป็นกลุ่มแรกที่มีการใช้น้ำมันเป็นเชื้อเพลิงแทนไม้ และเมื่อประมาณ 1,000 ปีก่อนคริสตกาล ชาวจีนเป็นชาติแรกที่มีการทำเหมืองถ่านหินและขุดเจาะบ่อแก๊สธรรมชาติลึกเป็นระยะร้อยเมตรได้
ซามูเอล เอ็ม เกียร์ (Samuel M. Kier) เป็นบุคคลแรกที่ถือได้ว่าขุดพบน้ำมัน โดยในปี พ.ศ. 2391 เขาได้ขุดพบน้ำมันโดยบังเอิญจากบ่อที่เขาขุดขึ้นบนฝั่งแม่น้ำอัลเลเกนี (Allegheny) ในมลรัฐเพ็นน์ซิลวาเนีย (Pennsylvania) และตั้งชื่อน้ำมันดังกล่าวว่า น้ำมันซีนีกา (Seneca oil) ซึ่งเป็นชื่อพื้นเมืองอเมริกัน ต่อมาเมื่อเกิดภาวะขาดแคลนน้ำมันปลาวาฬ ซึ่งขณะนั้นนิยมใช้เป็นเชื้อเพลิงให้แสงสว่าง และใช้เป็นน้ำมันหล่อลื่นสำหรับเครื่องยนต์ต่างๆ กันอย่างแพร่หลาย จึงเป็นแรงผลักดันให้มีการแสวงหาปิโตรเลียมมาใช้ทดแทน และนำไปสู่การจัดตั้งบริษัทเจาะหาน้ำมันชื่อ บริษัทซีนีกาออยส์ จำกัด (Seneca Oil Company) ขึ้นมา
ในช่วงปี พ.ศ. 2402 เป็นช่วงของ ยุคตื่นน้ำมัน ซึ่งเริ่มจากการที่ เอ็ดวิน แอล เดรก (Edwin L. Drake) ถูกส่งไปเจาะสำรวจหาน้ำมันที่เมืองทิทัสวิลล์ (Titusville) ในมลรัฐเพ็นน์ซิลวาเนีย (Pennsylvania) และเขาได้ขุดพบน้ำมันที่ระดับความลึก 69.5 ฟุต โดยมีน้ำมันไหลออกมาด้วยอัตรา 10 บาเรลต่อวัน จึงถือเป็นการเริ่มต้นธุรกิจน้ำมันในเชิงพาณิชย์ของโลกนับตั้งแต่นั้นเป็นต้นมา
สำหรับประเทศไทยนั้นมีหลักฐานปรากฏนับเป็นเวลามากกว่าร้อยปีมาแล้วว่า เจ้าหลวงเชียงใหม่ได้รับรายงานว่ามีการไหลซึมออกมาของปิโตรเลียมที่ฝาง และชาวบ้านในบริเวณนั้นได้ใช้น้ำมันดิบนี้เป็นยาทาแก้โรคผิวหนัง เจ้าหลวงเชียงใหม่จึงได้รับสั่งให้มีการขุดบ่อตื้นขึ้น เพื่อกักเก็บน้ำมันดิบที่ไหลซึมออกมานี้ไว้ และเป็นที่เรียกขานกันในเวลาต่อมาว่า "บ่อหลวง" ต่อมาในปี พ.ศ. 2464 พระเจ้าบรมวงศ์เธอ กรมพระกำแพงเพ็ชรอัครโยธิน เมื่อครั้งทรงดำรงตำแหน่งผู้บัญชาการรถไฟ ได้ทรงริเริ่มนำเข้าเครื่องเจาะมาเพื่อทำการเจาะสำรวจหาน้ำมันดิบ ในบริเวณที่มีผู้พบน้ำมันดิบไหลขึ้นมาบนผิวดินที่บ่อหลวง และยังทรงว่าจ้างนักธรณีวิทยาชาวอเมริกันเข้ามาสำรวจหาน้ำมันดิบ และถ่านหินในประเทศไทยอีกด้วย

 การสำรวจหาแหล่งปิโตรเลียม

การสำรวจหาแหล่งปิโตรเลียม เป็นการหาพื้นที่ซึ่งอาจมีชั้นหินกักเก็บปิโตรเลียมอยู่ โดยสามารถแบ่งขั้นตอนได้เป็นดังนี้

 ขั้นตอนการสำรวจหาข้อมูล (Exploration)

ในการสำรวจหาแหล่งปิโตรเลียม นักธรณีวิทยาจะใช้วิธีการสำรวจอยู่หลายวิธีด้วยกัน ดังนี้
1. การขุดเจาะหลุมเพื่อเก็บตัวอย่างหิน (Core Drilling) เป็นวิธีการที่อาศัยการขุดเจาะและเก็บตัวอย่างหินในหลุมเจาะขึ้นมาจากหลุมเจาะหลายๆ หลุมในบริเวณที่ทำการศึกษา และอาศัยการศึกษาตัวอย่างของหินจากหลุมเจาะ รวมทั้งระดับที่แน่นอนของตัวอย่างหิน ก็จะสามารถเปรียบเทียบชนิดของชั้นหิน และโครงสร้างของชั้นหินในบริเวณที่ศึกษาได้
2. การสำรวจโดยคลื่นสั่นสะเทือน (Seismic Prospecting) เป็นวิธีการที่อาศัยความรู้และหลักการของคลื่นไหวสะเทือนโดยอาศัยวัตถุระเบิด สำรวจโดยการขุดเจาะหลุมตื้นประมาณ 50 เมตร เพื่อใช้เป็นจุดระเบิด เมื่อจุดระเบิดขึ้น จะก่อให้เกิดคลื่นไหวสะเทือนวิ่งผ่านลงไปในชั้นหินและเกิดการสะท้อนกลับขึ้นมาสู่ผิวดิน และคำนวณหาความลึกที่คลื่นไหวสะเทือนนี้เดินทางได้ จากนั้นก็จะสามารถทราบโครงสร้างทางธรณีข้างล่างได้
3. การสำรวจโดยความโน้มถ่วง (Gravity Prospecting) เป็นวิธีการที่อาศัยความแตกต่างกันของค่าความถ่วงจำเพาะของหินชนิดต่างๆ ภายใต้เปลือกโลก ถ้าชั้นหินวางตัวอยู่ในแนวระนาบ จะสามารถวัดค่าความโน้มถ่วงที่คงที่ได้ แต่หากชั้นหินการเอียงเท ค่าของความโน้มถ่วงที่วัดได้จะแปรผันไปกับการวางตัวหรือโครงสร้างของชั้นหินนั้น ซึ่งก็จะทำให้ทราบลักษณะการวางตัวและโครงสร้างของชั้นหินนั้นได้จากการแปลผลข้อมูลที่ได้มา
ทั้งนี้ วิธีการทั้ง 3 วิธีการดังกล่าวข้างต้นนี้ ทำให้ทราบได้ว่าโครงสร้างที่พบนั้นมีความเหมาะสมแก่การเป็นแหล่งกักเก็บน้ำมันมากน้อยเพียงใด แต่ไม่ได้บ่งชี้ชัดเจนว่าชั้นหินนั้นจะเป็นชั้นหินกักเก็บน้ำมันหรือไม่

 ขั้นตอนการขุดเจาะ (Drilling)

เป็นการขุดเจาะหลุมเพื่อการผลิต โดยหลังจากที่ทำการสำรวจทางธรณีวิทยา จนทราบว่าน่าจะมีปิโตรเลียมอยู่ในบริเวณใดบ้าง ก็จะต้องทำการเจาะ หลุมสำรวจ (Exploration Well) โดยใช้วิธีสุ่มเจาะ เพื่อสำรวจหาปิโตรเลียมในบริเวณที่ยังไม่เคยมีการเจาะพิสูจน์มาก่อน จากนั้นก็จะมีการประเมินคุณค่าทางเศรษฐกิจและหาขอบเขตของแหล่งกักเก็บนั้น เพื่อให้แน่ใจว่าแหล่งกักเก็บนี้มีปริมาณมากพอในเชิงพาณิชย์ จึงจะทำการเจาะหลุมเจาะเพื่อนำปิโตรเลียมที่สะสมตัวอยู่นั้นขึ้นมาใช้ประโยชน์ต่อไป
หลังจากที่สำรวจทางธรณีวิทยาและธรณีฟิสิกส์ด้วยการวัดคลื่นความไหวสะเทือน (Seismic Survey) และแปลความหมายเพื่อหาแหล่งกักเก็บปิโตรเลียมอยู่ตรงส่วนใดบ้างใต้พื้นดินและกำหนดจุดเพื่อทำการเจาะสำรวจ คราวนี้ก็เป็นหน้าที่ของเจ้าหน้าที่ฝ่ายขุดเจาะที่ต้องทำการเจาะ "หลุมสำรวจ" (Exploration Well) โดยใช้วิธีเจาะสุ่มซึ่งเราจะเรียกหลุมชนิดนี้ว่า ‘หลุมแรกสำรวจ’ (Wildcat Well) เพื่อสำรวจหาปิโตรเลียมในบริเวณที่ยังไม่เคยมีการเจาะพิสูจน์เลย จากนั้นเมื่อถึงขั้นตอนของการประเมินคุณค่าทางเศรษฐกิจและหาขอบเขตของแหล่งกักเก็บปิโตรเลียม เราจะเจาะหลุมที่เรียกว่า "หลุมประเมินผล" (Delineation Well) และหลังจากที่เราแน่ใจแล้วว่ามีแหล่งกักเก็บปิโตรเลียมในปริมาณที่มากพอในเชิงพาณิชย์ เราจึงเจาะ "หลุมเพื่อการผลิตปิโตรเลียม" (Development Well) เพื่อนำปิโตรเลียมที่สะสมตัวอยู่ใต้พื้นดินขึ้นมาใช้ประโยชน์ต่อไป
การขุดเจาะหลุมเพื่อสำรวจและผลิตปิโตรเลียมนั้นเป็นงานที่ท้าทายและมีความสำคัญอย่างยิ่งเนื่องจากเราต้องขุดไปที่ความลึกประมาณ 3-4 กิโลเมตรใต้พื้นทะเล ในสมัยก่อนการขุดเจาะหลุม 1 หลุมนั้นต้องใช้เวลากว่า 60 วัน โดยใช้งบประมาณกว่า 5 ล้านเหรียญสหรัฐฯ ต่อหลุม [ต้องการอ้างอิง]ซึ่งถือว่าเป็นการลงทุนที่สูงและมีความเสี่ยงมาก เพราะหากเราขุดไปแล้วพบปริมาณน้ำมันหรือแก๊สธรรมชาติที่ไม่คุ้มค่าในเชิงพาณิชย์ การลงทุนนั้นก็สูญเปล่า แต่ในปัจจุบัน ด้วยเทคโนโลยีที่พัฒนาและทันสมัยมากยิ่งขึ้น ระยะเวลาในการขุดเจาะลดลงเหลือเพียง 4-5 วันต่อ 1 หลุม และใช้งบประมาณน้อยลงกว่าเดิม

 ขั้นตอนการผลิต (Production)

หลังจากที่มีการขุดเจาะเอาปิโตรเลียมขึ้นมาแล้ว ปิโตรเลียมที่ได้ก็จะผ่านเข้าสู่กระบวนการต่างๆ บนแท่นเพื่อแยกเอา น้ำ แก๊สคาร์บอนไดออกไซด์ และสารปนเปื้อนอื่นๆ ออกจากน้ำมันดิบและแก๊สธรรมชาตินั้น เพื่อนำเอาน้ำมันดิบและแก๊สธรรมชาติไปใช้ในการผลิต

 ขั้นตอนการสละหลุม (Abandonment)

ในกรณีที่ของหลุมที่ไม่ได้ใช้ประโยชน์แล้ว จะมีการอัดซีเมนต์ลงไปตามท่อผลิต เพื่อป้องกันไม่ให้ของไหลที่มีอยู่ในชั้นหินไหลไปสู่ชั้นหินอื่น ซึ่งอาจไปทำลายชั้นหินกักเก็บปิโตรเลียมใกล้เคียง หรือเข้าไปปนเปื้อนกับชั้นน้ำใต้ดินได้

 การผลิตปิโตรเลียม

เมื่อแยกเอา น้ำ แก๊สคาร์บอนไดออกไซด์ และสารปนเปื้อนอื่นๆ ออกจากน้ำมันดิบและแก๊สธรรมชาติ น้ำมันดิบจะถูกส่งผ่านไปยังสถานีแยกปิโตรเลียมเพื่อแปรสภาพให้เป็นผลิตภัณฑ์สำเร็จรูปชนิดต่างๆ ที่เหมาะสมต่อการใช้ประโยชน์ในรูปแบบต่างๆ

 การแยก (Separation)

โดยส่วนใหญ่จะแยกโดยวิธีการกลั่นลำดับส่วน (Fractional Distillation) โดยอาศัยความแตกต่างของจุดเดือดของสารประกอบไฮโดรคาร์บอนแต่ละชนิดที่รวมอยู่ในน้ำมันดิบ โดยนำน้ำมันมาให้ความร้อนที่อุณหภูมิ 368-385 องศาเซลเซียส แล้วผ่านเข้าไปในหอกลั่น น้ำมันที่ร้อนจะกลายเป็นไอลอยขึ้นไปยอด และควบแน่นเป็นของเหลวตกลงบนถาดรองรับในแต่ละช่วงของผลิตภัณฑ์ที่ต้องการ จากนั้นของไหลในถาดก็จะไหลออกมาตามท่อเพื่อน้ำไปเก็บแยกตามประเภท และนำไปใช้ต่อไป

 การเปลี่ยนโครงสร้าง (Conversion)

เนื่องจากผลิตภัณฑ์ที่ได้อาจมีคุณภาพที่ไม่ดีพอ จึงต้องใช้วิธีทางเคมีเพื่อเปลี่ยนโครงสร้างของน้ำมัน ให้น้ำมันที่ได้มีคุณภาพที่ดี เหมาะแก่การนำไปใช้ประโยชน์ในรูปแบบต่างๆ

 การปรับคุณภาพ (Treating)

เป็นการกำจัดสิ่งแปลกปลอมออกจากน้ำมันน้ำมันที่ได้มีการเปลี่ยนแปลงโครงสร้างแล้ว ซึ่งสิ่งแปลกปลอมที่สำคัญจะเป็นสารจำพวกกำมะถัน ซึ่งจะใช้วิธีการฟอกด้วยไฮโดรเจน หรือฟอกด้วยโซดาไฟเพื่อเป็นการกำจัดสารนั้นออก

 การผสม (Blending)

คือการนำผลิตภัณฑ์ที่ได้มาเติมหรือผสมสารที่เหมาะสม เพื่อให้ได้ผลิตภัณฑ์สำเร็จรูปตามที่ต้องการ เช่น การผสมน้ำมันเบนซินเพื่อเพิ่มเลขออกเทน หรือผสมน้ำมันเตาเพื่อให้ได้ความหนืดตามที่ต้องการ


 ผลิตภัณฑ์ปิโตรเลียม

เชื้อเพลิงปิโตรเลียม มีหลายรูปแบบ กล่าวคือ
  1. แก๊สธรรมชาติและแก๊สหุงต้ม (LPG) เป็นผลิตภัณฑ์ที่มีจุดเดือดต่ำมาก มีสถานะเป็นก๊าซที่อุณหภูมิห้องดังนั้น ในการเก็บรักษาต้องเพิ่มความดัน หรือลดอุณหภูมิให้ก๊าซเปลี่ยนสภาพเป็นของเหลว เมื่อลุกไหม้จะให้ความร้อนสูง และมีเปลวที่สะอาด ไม่มีสี ประโยชน์ ใช้เป็นแก๊สหุงต้ม เป็นเชื้อเพลิงสำหรับรถยนต์ รวมทั้งเตาเผา เตาอบต่างๆ
  2. เชื้อเพลิงเหลว แบ่งเป็น
น้ำมันเบนซิน (gasoline) เป็นเชื้อเพลิงที่ใช้กับเครื่องยนต์มาก โดยใช้จุดระเบิดที่หัวเทียน น้ำมันเบนซินที่มีเลขออกเทนต่ำ จะมีราคาถูก เพราะการเผาไหม้เชื้อเพลิงไม่ดี จึงมีการเติมสารจำพวกเตตระเอธิลเลต หรือสารเมทิลเทอร์เธียรีบิวทิลอีเธน (MTBE) ลงไปเพื่อให้เบนซินมีคุณภาพดีขึ้น ใกล้เคียงกับเบนซินที่มีเลขออกเทนสูง
น้ำมันก๊าด (kerosene) เป็นผลิตภัณฑ์หลักของอุตสาหกรรมปิโตรเลียมในระยะแรก เดิมใช้สำหรับจุดตะเกียงเท่านั้น แต่ปัจจุบัน มีการใช้ประโยชน์อย่างอื่นได้หลายทาง เช่น ใช้เป็นส่วนผสมในยาฆ่าแมลง สีทาบ้าน น้ำมันขัดเงา และน้ำยาทำความสะอาด ใช้เป็นเชื่อเพลิงสำหรับรถแทรกเตอร์ และเป็นเชื้อเพลิงในการเผาเครื่องเคลือบดินเผา
น้ำมันดีเซล (Diesel) ใช้กับเครื่องยนต์ที่มีการทำงานแตกต่างจากเครื่องยนต์เบนซิน เพราะต้องการความร้อนในลูกสูบที่เกิดจากการอัดอากาศสูง มักใช้กับเครื่องกำเนิดไฟฟ้า รถแทรกเตอร์ หัวจักรรถไฟ รถบรรทุก รถโดยสาร และเรือประมง
น้ำมันเตา (fuel oils) เป็นเชื้อเพลิงสำหรับเตาหม้อน้ำ เตาเผา หรือเตาหลอมในโรงงานอุตสาหกรรม ใช้กับเครื่องยนต์เรือเดินสมุทร เครื่องกำเนิดไฟฟ้าขนาดใหญ่

 อ้างอิง

  1. ^ "Petroleum". Concise Oxford English Dictionary

วันพฤหัสบดีที่ 21 กรกฎาคม พ.ศ. 2554

การเมื้อง...การเมือง

  รอบสัปดาห์ที่ผ่านมาท่าที "คนเสื้อแดง" แม้ยังหลบใน ยังพูดไม่เต็มปากเต็มคำ แสดงความเห็นไม่เต็มที่ แต่ก็สามารถสร้างความสะพรึงกลัวให้เกิดขึ้นได้อีกครั้ง นั่นเพราะภาพเผาบ้านเผาเมืองยังตามหลอนผู้คนที่ยังหวั่นเกรงว่า ถ้า  "คนเสื้อแดง" ไม่พออกพอใจเรื่องอันใด มีความเป็นไปได้ที่จะมีม็อบลงถนนตามคำขู่
     นั่นเป็นความหวาดกลัว ท่ามกลางดัชนีความสุขของคนไทยพุ่งปรี๊ดเป็นประวัติศาสตร์
     ที่จริงแล้วน่าจะเป็นเรื่องดีที่แกนนำคนเสื้อแดง อาทิ "ณัฐวุฒิ ใสยเกื้อ"  ออกมายืนยันว่าจะยังไม่มีการชุมนุมกดดันคณะกรรมการการเลือกตั้ง (กกต.)  กรณีที่ยังแขวน "ยิ่งลักษณ์ ชินวัตร" และว่าที่ ส.ส.แดงร่วม 20 คน เอาไว้ก่อน  เพราะต้องรอสอบเรื่องร้องเรียน 
     แต่ความจริงเป็นเช่นนั้นหรือ?
     หากดูในทางกลับกัน กกต.ไม่ได้แขวนเฉพาะ "ยิ่งลักษณ์ ชินวัตร" แต่แขวน "อภิสิทธิ์ เวชชาชีวะ" ด้วย และไม่พบว่าจะมีผู้ให้การสนับสนุนพรรคประชาธิปัตย์คนไหนออกมาบอกว่า จะจัดชุมนุมใหญ่ จะไปกดดัน กกต.
     สำคัญไปกว่านั้น พรรคประชาธิปัตย์น่าจะเดือดเนื้อร้อนใจมากกว่า เพราะ  "อภิสิทธิ์ เวชชาชีวะ" เป็นกรรมการบริหารพรรค แต่ "ยิ่งลักษณ์ ชินวัตร" ไม่มีตำแหน่งใดๆ ในพรรคเพื่อไทยเลย
     นั่นหมายความว่าอย่างไร?
     ถ้า กกต.ชี้ว่า "อภิสิทธิ์ เวชชาชีวะ" ผิด พรรคประชาธิปัตย์ถูกยุบทันที  ตามรัฐธรรมนูญแห่งราชอาณาจักรไทย พุทธศักราช 2550 มาตรา 237 
 ขณะที่พรรคเพื่อไทยไม่ระคายผิว หาก กกต.ชี้ว่า "ยิ่งลักษณ์ ชินวัตร"  ผิด อย่างมากก็แค่เลื่อนลำดับปาร์ตี้ลิสต์ขึ้นมา แล้วหาคนอื่นมาสวมเก้าอี้นายกรัฐมนตรีแทน
     อาจจะผิดแผนของ "ทักษิณ ชินวัตร" ไปบ้าง เพราะเขาต้องการคนที่ไว้ใจได้มากที่สุดมาเป็นนายกฯ นอมินีคนที่ 3 แต่ก็เป็นเรื่องที่ดีสำหรับ "ตระกูลชินวัตร" ที่คนในตระกูลไม่ถูกสังเวยการเมืองต่อจาก "สมชาย วงศ์สวัสดิ์"
     กกต.จะรับรอง หรือไม่รับรอง "ยิ่งลักษณ์ ชินวัตร" ไม่ใช่ประเด็นสำคัญสำหรับประเทศนี้ แต่สิ่งสำคัญคือ "เสื้อแดง" จะเอาอย่างไร 
     จะไม่พอใจถึงขั้นลุกขึ้นมาเผาเมืองอีกรอบหรือไม่?
     พรรคเพื่อไทยชนะการเลือกตั้งถล่มทลาย ภาคเหนือ อีสาน ได้เก้าอี้ ส.ส.เป็นกอบเป็นกำ จึงไม่มีอะไรน่าแปลกใจที่ผลสำรวจดัชนีความสุขของประชาชนจะพุ่งเป็นประวัติการณ์ เพราะคนเสื้อแดงคือเสียงส่วนใหญ่ของประชาชนในประเทศนี้
     แต่ "เสียงส่วนใหญ่" ควรให้อะไรกับประเทศบ้าง นอกจากการข่มขู่คุกคามทุกครั้งยามที่ไม่พออกพอใจ และมีความสุขอยู่กับคำว่าตัวเองเป็นเสียงส่วนใหญ่
 เมื่อครั้งพรรคเพื่อไทยไร้ซึ่งอำนาจ สังคมไทยได้รู้ซึ้งถึงพลังอันดุดัน ดุเดือด จนยากต่อการควบคุมกันเองของคนเสื้อแดงมาแล้ว และมาถึงวันนี้พรรคเพื่อไทยกำลังเข้าสู่อำนาจ หากคนเสื้อแดงไม่พอใจ อะไรจะเกิดขึ้น!
     ทั้งหมดนี้ไม่ใช่การตีตนไปก่อนไข้ หรือวิจารณ์คนเสื้อแดงแบบเรื่อยเปื่อย
 แต่เป็นพฤติการณ์ที่พรรคเพื่อไทย และแกนนำคนเสื้อแดงบางคนสื่อออกมาให้เห็นว่าพร้อมที่จะใช้ "กำลัง" เพื่อให้ได้มาซึ่งสิ่งที่ต้องการ
 เชื่อว่าการชุมนุมใหญ่ของคนเสื้อแดงจะเกิดขึ้นทันที หาก กกต.ประกาศไม่รับรองผลการเลือกตั้งของ "ยิ่งลักษณ์ ชินวัตร" และว่าที่ ส.ส.เสื้อแดงทั้งมวล
 และจะไม่มีคนเสื้อแดงคนไหนสนใจว่า ที่มาของการไม่รับรองให้เป็น ส.ส.  โดย กกต.นั้น มาจากสาเหตุอะไร
     นอกจากสิ่งที่คนเสื้อแดงท่องจนขึ้นใจมาแต่ไหนแต่ไร
     "อำมาตย์" แทรกแซง!
     จนถึงทุกวันนี้การจับโยงทุกสิ่งทุกอย่างโดยมี "อำมาตย์" เป็นศูนย์กลางนั้นยังคงดำเนินอยู่ 
     กรณีค่าแรงขั้นต่ำ 300 บาททั่วประเทศ ที่สุดท้ายเริ่มย้อนกลับเข้าหาพรรคเพื่อไทยเอง กำลังจะทำให้พรรคเพื่อไทย โกหก หลอกลวงประชาชน 
     หาเสียงอย่าง พอได้เป็นรัฐบาลเป็นอีกอย่าง
     หากใครติดตามดูการปราศรัยหาเสียงของพรรคเพื่อไทย โดย "ยิ่งลักษณ์  ชินวัตร" จะเห็นได้ว่า เริ่มต้นด้วยการประกาศปรับค่าแรงขั้นต่ำทั่วประเทศ วันละ 300 บาท สิ่งเหล่านี้ยังปรากฏในแผ่นป้ายหาเสียงของพรรคเพื่อไทยทั่วประเทศ
     แต่เมื่อผลการเลือกตั้งออกมา กลับกลายเป็นว่า ผู้มีอำนาจที่แท้จริงคือ  "ทักษิณ ชินวัตร" ประกาศขึ้นค่าแรงขั้นต่ำนำร่องแค่ 2 จังหวัด คือ กรุงเทพมหานคร กับภูเก็ต ซึ่งในความเป็นจริง ค่าแรงขั้นต่ำของ 2 จังหวัดนี้ ไม่ห่างจาก  300 บาทมากนัก
     ที่ไม่ยอมทำพร้อมกันทั่วประเทศเหมือนตอนที่รับปากขณะปราศรัยหาเสียง เป็นเพราะคนพวกนี้รู้ดีว่า ผลกระทบทางเศรษฐกิจนั้นมีมากมายมหาศาล
      นั่นเป็นที่มาว่า ทำไมสุดท้าย "ยิ่งลักษณ์ ชินวัตร" ถึงออกมาพูดว่า นี่ไม่ใช่นโยบายเร่งด่วน
     แต่คนเสื้อแดงไม่ได้คิดเช่นนั้น
     พวกเขาเชื่อว่า "อำมาตย์" รวมหัวกับ "นายทุน" กดขี่ชนชั้นรากหญ้า กดค่าแรงไม่ให้คนจนโงหัว
 ไม่หันกลับไปดูว่า ค่าแรง 300 บาททั่วประเทศนั้นทำได้จริงหรือไม่  กระทบเศรษฐกิจในภาพรวมอย่างไร คนไทยตกงานสักเท่าไหร่ แรงงานต่างด้าวทะลักเข้าไทยขนาดไหน คนเสื้อแดงสนใจรับฟังเหตุผลเหล่านี้หรือไม่
 นั่นเพราะความคับแคบทางความคิด ที่จับ "อำมาตย์" มาเป็นจุดศูนย์รวมของทุกปัญหา จนสังเคราะห์ไม่ออกว่ารากเหง้าที่แท้จริงของปัญหาคืออะไร
 ก็อาจมี "คนเสื้อแดง" ซึ่งเป็นเจ้าของธุรกิจเอสเอ็มอี เริ่มรู้สึกแล้วว่า อย่างนี้ "มันไม่ใช่" แต่กลุ่มนี้จะมีอยู่สักกี่คน
 แน่นอนค่าแรง 300 บาทต่อวัน ควรจะเกิดขึ้นจริง แต่การเกิดไม่ใช่หักด้ามพร้าด้วยเข่า ต้องค่อยเป็นค่อยไป ให้ทุกฝ่ายอยู่ได้ และร่ำรวยไปพร้อมๆ  กัน
 แต่น่าเสียดายวิธีนี้ไม่ใช่วิธีของพรรคเพื่อไทย
 ปัญหาเสื้อแดงจะเป็นปัญหาใหม่ และปัญหาใหญ่ของสังคมไทย ซึ่งต้องแก้ไขกันในอนาคต
 คนเสื้อแดงอาจรู้สึกว่าการที่พรรคเพื่อไทยชนะการเลือกตั้ง คือชัยชนะของฝ่ายประชาธิปไตย คือการได้ประชาธิปไตยมาไว้ในอ้อมกอด และสิ่งที่คนเสื้อแดงทำหลังจากนี้คือการรักษาไว้ซึ่งความเป็นประชาธิปไตย รวมไปถึง "ยิ่งลักษณ์ ชินวัตร" ต้องได้เป็น ส.ส. ถ้าไม่ได้แสดงว่าไม่เป็นประชาธิปไตย
 ส่วน "อภิสิทธิ์ เวชชาชีวะ" จะได้เป็น ส.ส.หรือไม่ คนเสื้อแดงจะไปสนใจทำไม!
 นี่คือปัญหา ตราบเท่าที่คนเสื้อแดงคิดว่า ตนเท่านั้นเป็นผู้สร้างประชาธิปไตย หลังจากนี้จะนำไปสู่การรื้อ ล้าง อย่างขนานใหญ่
 พรรคเพื่อไทยและคนเสื้อแดงมองกติกาที่ใช้อยู่ในปัจจุบันแค่เครื่องมือของอำมาตย์ พวกเขาต้องการให้เกิดการเปลี่ยนแปลง
 และดูเหมือนพรรคเพื่อไทยและคนเสื้อแดงต้องการสร้างกติกาขึ้นมาใหม่  อย่างแรกที่เริ่มพูดถึงกันแล้วคือ การยกเลิกรัฐธรรมนูญฉบับปัจจุบัน ที่อาจส่งผลให้ "ทักษิณ ชินวัตร" พ้นมลทิน ไปโดยปริยาย
 เรื่องที่ว่าอาจเกิดขึ้นได้ในเร็ววันนี้ ยกเว้นการจัดสรรอำนาจภายในพรรคเพื่อไทยและคนเสื้อแดงไม่ลงตัว
 หากกระถาง 3 ขา ขาใดขาหนึ่งหักไป อีก 2 ขาก็มิอาจรับน้ำหนักกระถางได้
 นี่คือการเมืองภายในของ "ระบอบทักษิณใหม่" 
 หาก "ทักษิณ ชินวัตร" ผิดพลาด จัดสรรอำนาจไม่ลงตัว แล้วปล่อยให้เกิดเนื้อเน่าใน
 ถึงวันนั้น มวยชนะ คนก็ไม่แพ้ แต่กองเชียร์จะเผาเวที.

อะโรมาติก ไฮโดรคาร์บอน

                 โพลีไซคลิก อะโรมาติก ไฮโดรคาร์บอน หรือ พีเอเอช เป็นสารประกอบไฮโดรคาร์บอนที่ประกอบด้วยวงเบนซีนตั้งแต่ 2 วงขึ้นไป จัดเรียงเป็นเส้นตรง เป็นมุม หรือเป็นกลุ่ม มีเฉพาะอะตอมของไฮโดรเจนและคาร์บอน ส่วนใหญ่ไม่ละลายน้ำ ค่าลอการิทึมของค่าคงที่การละลายในน้ำ - ออกทานอลระหว่าง 3 - 7 จุดเดือดระหว่าง 150 - 325 องศาเซลเซียส และจุดหลอมเหลวระหว่าง 101 - 438 องศาเซลเซียส ในสิ่งแวดล้อม มักเกาะกับอนุภาคฮิวมิคในดิน หรือสะสมในสิ่งมีชีวิต

                 ที่มา
PAHs สามารถเกิดได้เองตามธรรมชาติจากกระบวนการเผาไหม้ที่ไม่สมบูรณ์ของสารอินทรีย์ รวมทั้งควันจากท่อไอเสียรถยนต์และควันบุหรี่ การเผาไหม้ของเชื้อเพลิงในโรงงานอุตสาหกรรม การกลั่นน้ำมันดิบ อุตสาหกรรมไม้ซึ่งใช้สารเคลือบทาเนื้อไม้เพื่อป้องกันแมลงที่มี PAHs เป็นองค์ประกอบ เช่น creosort และ anthracene oil
PAHs พบได้ทั้งในน้ำ ดิน ดินตะกอน อากาศ น้ำใต้ดิน และบริเวณริมถนน ความเข้มข้นของ PAHs ในสิ่งแวดล้อมขึ้นกับระยะห่างระหว่างบริเวณที่ปนเปื้อนกับแหล่งที่ผลิต PAHs ระดับของการพัฒนาอุตสาหกรรมและความสามารถในการเคลื่อนย้ายของ PAHs สรุปแหล่งที่มาของ PAHs ได้ดังนี้
  • ไอเสียจากการเผาไหม้ของเครื่องยนต์ PAHs ที่พบในอากาศมาจากควันจากท่อไอเสียรถยนต์แลเครื่องจักรกลเป็นส่วนใหญ่ ปริมาณ PAHs ที่รวมตัวกับฝุ่นละอองขนาดเล็กในอากาศบริเวณกรุงเทพมหานครเมื่อ พ.ศ. 2539 บริเวณเส้นทางจราจรพบ benzo[a]pyrene 2.04 ng/m3และ benzo[a]anthracene 1.13 ng/m3
  • การปนเปื้อนของน้ำมัน ปริมาณ PAHs ที่พบในดินและน้ำตะกอนบริเวณชายฝั่งทะเลมาจากการปนเปื้อนของน้ำมันที่ใช้ในเครื่องจักรกลในโรงงานอุตสาหกรรมและเรือต่างๆรวมทั้งน้ำมันเครื่องเก่าที่ผ่านการใช้แล้ว โดยพบปริใณสูงในระยะใกล้ฝั่งและน้อยลงตามลำดับเมื่อห่างฝั่งออกไป
  • กระบวนการแปรรูปและปรุงอาหาร การปรุงและการแปรรูปอาหารที่ทำให้เกิด PAHs ได้คือการอบขนม การเคี่ยวน้ำตาลเป็นคาราเมล การคั่วกาแฟซึ่งเกิดจากปฏิกิริยาสีน้ำตาล หรือเกิดขึ้นระหว่างการหมักดอง เช่นผักดองกิมจิ ซีอิ๊ว นอกจากนั้น การปรุงอาหารโดยการอบ ปิ้ง ย่างที่เป็นที่นิยมในปัจจุบัน เช่น ไส้กรอกรมควัน หมูปิ้ง ไกย่าง ที่ไหม้เกรียมทำให้มี PAHs ปนเปื้อนในอาหารได้

     ตัวอย่างสารประกอบ PAH

สารเคมีสารเคมี
AnthraceneAnthracene.svgBenzo[a]pyreneBenzo-a-pyrene.svg
ChryseneChrysene.svgCoroneneCoronene.svg
CorannuleneCorannulene.svgNaphthaceneNaftacene.svg
NaphthaleneNaphthalene.svgPentacenePentacene.svg
PhenanthrenePhenanthrene.svgPyrenePyrene.svg
TriphenyleneTriphenylene.svgOvaleneOvalene.svg

     การเปลี่ยนแปลงของ PAHs ในสิ่งแวดล้อม

เมื่อ PAHs เข้าสู่สิ่งแวดล้อม อาจเกิดการเปลี่ยนแปลงดังนี้
  • การย่อยสลายทางชีวภาพโดยสิ่งมีชีวิตชนิดต่างๆได้แก่
    • แบคทีเรีย ในสภาวะที่มีออกซิเจน แบคทีเรียจะย่อยสลาย PAHs เริ่มจากการออกซิไดส์ ให้เป็น dihydrodiol จากนั้นจึงแตกวงออกจนได้สารตัวกลางในวัฏจักรเครบส์ และนำไปใช้เป็นแหล่งคาร์บอนและพลังงานได้ในที่สุด
    • เชื้อราบางกลุ่ม เช่น white rot fungi ย่อยสลาย PAHs โดยใช้เอนไซม์สำหรับย่อยสลายลิกนิน เช่น lignin peroxidase ซึ่งเป็นเอนไซม์ที่รากลุ่มนี้ใช้ย่อยสลายเนื้อไม้ แต่เอนไซม์มีความจำเพาะต่ำจึงย่อยสลาย PAHs ที่มีโครงสร้างคล้ายลิกนินได้ด้วย 
  • การย่อยสลายโดยแสง PAHs ถูกออกซิไดส์ด้วยแสงได้
  • การแตกสลายด้วยน้ำ เกิดได้น้อยมาก
  • การรวมตัวกับดิน PAHs เป็นสารที่ไม่ชอบน้ำ ค่าคงที่การละลายในน้ำ - ออกทานอลสูง จึงยึดเกาะกับอนุภาคของดินหรือดินตะกอนได้ดี จึงพบการปนเปื้อนในบริเวณดังกล่าวได้สูง การกระจายในดินชั้นต่างๆขึ้นกับขนาดของโมเลกุลและชั้นดิน PAHs มที่มีวงเบนซีน 2-3 วง มีแนวโน้มจะพบมากในชั้นของทรายบริเวณน้ำใต้ดิน ส่วน PAHs ที่มีวงเบนซีน 5-6 วง มีแนวโน้มที่จะพบในชั้นของดินที่มีสารอินทรีย์มาก และ PAHs เหล่านี้มีแนวโน้มจะถูกย่ยอสลายโดยแบคทีเรียยากอีกด้วย 

     ความเป็นพิษ

โดยไป โพลีไซคลิก อะโรมาติก ไฮโดรคาร์บอนเป็นสารเคมีที่มีความเป็นพิษเฉียบพลันต่ำ ในสิ่งมีชีวิตชั้นสูงจะพบความเป็นพิษเรื้อรัง การได้รับแบบเรื้อรังอาจทำให้เกิดความเป็นพิษต่อระบบต่างๆของร่างกายได้ แต่อาการไม่รุรแรงนัก ความเป็นพิษที่สำคัญของ PAHs คือความสามารถในการก่อมะเร็งในอวัยวะหลายชนิด แต่ไม่มีผลต่อการพัฒนาของตัวอ่อนและพฤติกรรมของสิ่งมีชีวิต

    การเข้าสู่ร่างกาย

PAHs เข้าสู่ร่างกายได้หลายวิธี ทั้งโดยการกินอาหารที่ปนเปื้อน PAHs สูดดมไอระเหยหรือเขม่าควันไฟที่มี PAHs ผสมอยู่ หรือโดยการสัมผัสทางผิวหนัง มีรายงานว่า PAHs เข้าสู่ร่างกายโดยการสูดดม โดยพบ เมตาบอไลต์ของเบนโซเอไพรีนในปัสสาวะของอาสาสมัครชายที่สูบบุหรี่ 15 -20 มวนต่อวัน เป็นเวลานานกว่า 10 ปี โดยเมตาบอไลต์ในปัสสาวะของอาสาสมัครที่ยังมีสุขภาพดีมีค่าสูงกว่าในอาสาสมัครที่เป็นมะเร็งปอด และในอาสามัครที่กินเนื้อย่างที่ปนเปื้อนเบนโซเอไพรีนจะพบเบนโซเอไพรีนในอุจจาระ แต่จะไม่พบในอาสามัครที่กินเนื้อย่างที่ไม่ปนเปื้อน
การแพร่กระจายของ PAHs ในร่ากายของสัตว์ทดลองพบว่าเมื่อได้รับโดยการสูดดมและการกินจะแพร่ไปยัง ปอด ตับ ไต และทางเดินอาหาร หนูที่ได้รับเบนโซเอไพรีนโดยการหยอดเข้าหลอดคอ พบว่าเบนโซเอไพรีนจะกระจายไปยังปอด ตับ ทางเดินอาหารและซาก โดยเมตาบอไลต์ในลำไส้จะมากขึ้นเมื่อเวลานานขึ้นแสดงว่ามีการขับออกทางน้ำดีและมีการหมุนเวียนระหว่างลำไส้และตับ และสามารถแพร่ไปยังลูกอ่อนในครรภ์ได้ แต่ไม่มีรายงานเกี่ยวกับการแพร่กระจายหลังการสัมผัสทางผิวหนัง

 สารก่อกลายพันธุ์

เอนไซม์ของยูคาริโอท จะเปลี่ยนพีเอเอชให้เป็นอนุพันธ์อีปอกไซด์ซึ่งเข้าไปยึดเกาะกับดีเอ็นเอได้ เมื่อ PAHs เข้าสู่ร่างกายจะถูกเปลี่ยนรูปด้วยเอนไซม์ในกลุ่มไซโตโครม พี-450ที่มีการทำงานแบบออกซิเดส ซึ่งจะได้เมตาบอไลต์ต่างกันไปแล้วแต่ชนิดของ PAHs เมตาบอไลต์บางชนิดเป็นพิษและเป็นสารก่อมะเร็ง เช่น 3,4-diol-1,2, epoxide ซึ่งเป็นเมตาบอไลต์ของเบนโซเอแอนทราซีน และ 7,8,alpha-dihydroxy-9alpha,10alpha-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) ซึ่งเป็นเมตาบอไลต์ของ เบนโซเอไพรีน
เมตาบอไลท์ที่เป็นสารก่อมะเร็ง เช่น BPDE เหล่านี้มี epoxide อยู่ในส่วนที่เรียกว่า "Bay region" epoxide ที่ตำแหน่งนี้ สามารถเปลี่ยนเป็น carbonium ion มีประจุเป็นบวกและมีความไวสูงในการเข้าจับกับสารชีวโมเลกุลที่มีประจุเป็นลบได้
เมตาบอไลต์ดังกล่าวจะเข้าไปจับกับ DNA ที่ตำแหน่งต่างๆ การเข้าจับกับดีเอ็นเอดังกล่าว เมื่อดีเอ็นเอเกิดการจำลองตัวเอง การเติมเบสมาเข้าคู่กับสารที่ถูกจับจะผิดไป ทำให้เกิดมิวเตชันที่ลำดับเบส อย่างไรก็ตาม โอกาสของการเกิดมิวเตชั่นขึ้นกับความสามารถของเซลล์ในการซ่อมแซมดีเอ็นเอที่ผิดปกติและระยะเวลาที่ได้รับสารก่อนการจำลองตัวเอง ถ้าเซลล์ซ่อมแซมได้ทัน การเกิดมิวเตชันจะลดลง เช่นการได้รับ BPDE ในระยะ S จะเกิดมิวเตชันมากว่าระยะ G1

   ความเป็นพิษแบบอื่น

  • รบกวนระบบต่อมไร้ท่อในปลา  และมีผลกระทบต่อสเตอรอยด์ฮอร์โมนในกลุ่มอาร์โทรพอดและมีผลต่อการลอกคราบของปู ครัสเตเชียนหลายชนิดที่สัมผัสกับน้ำมันดินมักมีการลอกคราบที่ผิดปกติ
  • รบกวนการสื่อสารระหว่างเซลล์ 
  • แนฟทาลีน (พบในลูกเหม็น) สามารถเข้าไปจับกับโมเลกุลของตับ ไต ปอด ยับยั้งกระบวนการหายใจที่ไมโตคอนเดรีย เป็นพิษต่อระบบประสาท ระคายเคืองต่อผิวหนังและตา ก่อให้เกิดการแพ้แสง และเป็นสารก่อภูมิแพ้อย่างอ่อน นอกจากนั้นยังทำให้เกิดการแลกเปลี่ยนชิ้นส่วนระหว่างโครโมโซมคู่เหมือนมากขึ้น ยับยั้งการส่งสัญญาณผ่านช่องว่างระหว่างเซลล์ ลดระดับอิมมูโนโกลบลูลินเอและอิมมูโนโกลบลูลินจีในระบบภูมิคุ้มกัน
  • PAHs มีผลต่อโครงสร้างชุมชนจุลินทรีย์ในดิน โดยในดินที่มีการปนเปื้อนน้ำมันจะมีโครงสร้างจุลินทรีย์ต่างไปจากดินที่ไม่ปนเปื้อน โดยจะมีแบคทีเรียแกรมลบมากขึ้น พบ alpha-proteobacteria นอกจากนั้นจะมีปริมาณ alkane degrader และ PAH-degrader เพิ่มขึ้นด้วย 

 ความเป็นพิษต่อพืช

PAHs เป็นพิษต่อพืชโดยยับยั้งทั้งการเจริญเติบโต การสังเคราะห์ด้วยแสงและการดูดซึมแร่ธาตุเช่น การทำลายคลอโรฟิลล์ยับยั้งขนส่งอิเล็กตรอน ทำให้พืชเกิดสีเหลือง (Chlorosis) ขึ้น ทำให้พืชเหี่ยวเฉาโดยลดแรงดันเต่งภายในเซลล์พืช ซึ่งเกิดจากการรบกวนการทำงานของเยื่อหุ้มเซลล์ เป็นพิษต่อการเจริญของต้นอ่อนมากกว่าการงอก ความเป็นพิษของ PAHs แต่ละชนิดนั้นจะต่างกันไป ขึ้นกับชนิดของพืช ความสามารถในการระเหย และสภาพแวดล้อมอื่นๆ เช่นความเป็นกรด-ด่างของดิน เป็นต้น

  ความเสี่ยง

อาชีพที่มีความเสี่ยงที่ต้องสัมผัสกับ PAHs ได้แก่ กระบวนการผลิตโครเมียม การถลุงแร่ที่มีนิกเกิล อุตสาหกรรมอะลูมิเนียม การหลอมเหล็ก การผลิตถ่านหิน งานพิมพ์ที่สัมผัสกับหมึกพิมพ์ งานที่ต้องสัมผัสเขม่าน้ำมัน เช่น ช่างซ่อมถนน ช่างอู่รถ วัสดุในโรงงานที่มีไอระเหยของ PAHs ได้แก่ น้ำมันดิบจากถ่านหินหรือยางมะตอย น้ำมันแร่ที่ไม่ได้ผ่านกระบวนการทำให้บริสุทธิ์ เขม่าจากการเปผาไหม้ ควันไอเสีย ความเสี่ยงต่อมะเร็งปอดอย่างชัดเจน ได้แก่ อาชีพผลิตถ่านหินและก๊าซถ่านหินซึ่งมีผลพลอยได้คือยางมะตอยใช้ทำถนน ส่วนอาชีพอื่นไม่ชัดเจน

alkyne

             แอลไคน์ (alkyne) เป็นสารประกอบไฮโดรคาร์บอนชนิดหนึ่ง ซึ่งในโมเลกุลจะมีพันธะสามระหว่างอะตอมของคาร์บอนหนึ่งที่หรือมากกว่าจัดเป็นสารประกอบไฮโดรคาร์บอนชนิดไม่อิ่มตัว มีสูตรทั่วไปคือ CnH2n-2 แอลไคน์ตัวแรกคือ C2H2 (หรือที่เรียกว่า ethyne)

 คุณสมบัติ

  • มีความหนาแน่นน้อยกว่าน้ำ
  • มีทุกสถานะ C1-C4 จะมีสถานะเป็นแก๊ส C5-C17 จะมีสถานะเป็นของเหลว C18 ขึ้นไป จะมีสถานะเป็นของแข็ง
  • จุดเดือด จุดหลอมเหลวต่ำ เมื่อเทียบกับสารอินทรีย์อื่น แต่จะสูงสุดในบรรดาไฮโครคาร์บอนด้วยกันเอง คือ แลคไคน์ > แอลแคน > แอลคีน เมื่อมีจำนวนคาร์บอนในโมเลกุลเท่ากัน เช่น C3H4 จะมีจุดเดือดสูงกว่า C3H8 และ C3H6
  • ไม่ละลายน้ำ เพราะเป็นโมเลกุลไม่มีขั้ว
  • เมื่อเกิดการเผาไหม้จะให้พลังงานและเขม่ามาก